Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.280
Filtrar
1.
MedEdPORTAL ; 20: 11418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645713

RESUMO

Introduction: Climate change is the single biggest health threat facing humanity, with direct and indirect impacts on mental health, yet health impacts of climate change remain notably absent from most medical school curricula. We describe a timely interactive educational session on climate change and mental health that was implemented and studied on a medical student clinical psychiatry rotation. Methods: We developed a 1-hour introductory session on the mental health impacts of climate change and potential solutions. The session was delivered to third-year medical students on their 4-week clinical psychiatry rotation and included pre- and postsession survey questions assessing their knowledge, comfort, and readiness regarding the topic. Results: Seventy students participated in the session, with 49 students completing the pre- and postsession surveys, giving a response rate of 70%. The average score for the four Likert-scale questions on the survey increased from 2.7 presession to 3.9 postsession on a 5-point scale (1 = strongly disagree, 5 = strongly agree). All questions displayed statistically significant improvement. Qualitative analysis identified knowledge gained about the mental health impacts of climate change as the most important aspect of the session to students. Discussion: The introductory session effectively filled an urgent need in medical education curricula regarding climate change's effects on human health. Overall, distribution of and improvement upon this timely teaching content can serve a valuable role in medical student education as the effects of climate change, particularly on mental health, continue to progress throughout the century.


Assuntos
Mudança Climática , Currículo , Educação de Graduação em Medicina , Saúde Mental , Estudantes de Medicina , Humanos , Inquéritos e Questionários , Educação de Graduação em Medicina/métodos , Estudantes de Medicina/psicologia , Estudantes de Medicina/estatística & dados numéricos , Psiquiatria/educação
2.
MethodsX ; 12: 102699, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660030

RESUMO

In this study, we adopt an interdisciplinary approach, integrating agronomic field experiments with soil chemistry, molecular biology techniques, and statistics to investigate the impact of organic residue amendments, such as vinasse (a by-product of sugarcane ethanol production), on soil microbiome and greenhouse gas (GHG) production. The research investigates the effects of distinct disturbances, including organic residue application alone or combined with inorganic N fertilizer on the environment. The methods assess soil microbiome dynamics (composition and function), GHG emissions, and plant productivity. Detailed steps for field experimental setup, soil sampling, soil chemical analyses, determination of bacterial and fungal community diversity, quantification of genes related to nitrification and denitrification pathways, measurement and analysis of gas fluxes (N2O, CH4, and CO2), and determination of plant productivity are provided. The outcomes of the methods are detailed in our publications (Lourenço et al., 2018a; Lourenço et al., 2018b; Lourenço et al., 2019; Lourenço et al., 2020). Additionally, the statistical methods and scripts used for analyzing large datasets are outlined. The aim is to assist researchers by addressing common challenges in large-scale field experiments, offering practical recommendations to avoid common pitfalls, and proposing potential analyses, thereby encouraging collaboration among diverse research groups.•Interdisciplinary methods and scientific questions allow for exploring broader interconnected environmental problems.•The proposed method can serve as a model and protocol for evaluating the impact of soil amendments on soil microbiome, GHG emissions, and plant productivity, promoting more sustainable management practices.•Time-series data can offer detailed insights into specific ecosystems, particularly concerning soil microbiota (taxonomy and functions).

3.
Front Plant Sci ; 15: 1367795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645386

RESUMO

Non-photochemical quenching (NPQ) is a protective mechanism used by plants to safely dissipate excess absorbed light energy as heat, minimizing photo-oxidative damage. Although the importance of NPQ as a safety valve for photosynthesis is well-known, the physiological and environmental effects of the heat produced remain unclear because the amount of heat produced by NPQ is considered negligible, and its physiological effects have not been directly observed. Here, we calculated the heat produced by NPQ and evaluated its impact on the leaf and global warming based on simplified models. Our evaluation showed that the heat produced by NPQ in a given leaf area is 63.9 W m-2 under direct sunlight. Under the standard condition, NPQ warms up the leaf at less than 0.1°C, but it could be 1°C under particular conditions with low thermal conductance. We also estimated the thermal radiation of vegetation's NPQ to be 2.2 W m-2 par global averaged surface area. It is only 0.55% of the thermal radiation by the Earth's surface, but still significant in the current climate change response. We further discuss the possible function of NPQ to plant physiology besides the safety valve and provide strategies with artificial modification of the NPQ mechanism to increase food production and mitigate global warming.

4.
Infect Dis Model ; 9(2): 618-633, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38645696

RESUMO

The rapid acceleration of global warming has led to an increased burden of high temperature-related diseases (HTDs), highlighting the need for advanced evidence-based management strategies. We have developed a conceptual framework aimed at alleviating the global burden of HTDs, grounded in the One Health concept. This framework refines the impact pathway and establishes systematic data-driven models to inform the adoption of evidence-based decision-making, tailored to distinct contexts. We collected extensive national-level data from authoritative public databases for the years 2010-2019. The burdens of five categories of disease causes - cardiovascular diseases, infectious respiratory diseases, injuries, metabolic diseases, and non-infectious respiratory diseases - were designated as intermediate outcome variables. The cumulative burden of these five categories, referred to as the total HTD burden, was the final outcome variable. We evaluated the predictive performance of eight models and subsequently introduced twelve intervention measures, allowing us to explore optimal decision-making strategies and assess their corresponding contributions. Our model selection results demonstrated the superior performance of the Graph Neural Network (GNN) model across various metrics. Utilizing simulations driven by the GNN model, we identified a set of optimal intervention strategies for reducing disease burden, specifically tailored to the seven major regions: East Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle East and North Africa, North America, South Asia, and Sub-Saharan Africa. Sectoral mitigation and adaptation measures, acting upon our categories of Infrastructure & Community, Ecosystem Resilience, and Health System Capacity, exhibited particularly strong performance for various regions and diseases. Seven out of twelve interventions were included in the optimal intervention package for each region, including raising low-carbon energy use, increasing energy intensity, improving livestock feed, expanding basic health care delivery coverage, enhancing health financing, addressing air pollution, and improving road infrastructure. The outcome of this study is a global decision-making tool, offering a systematic methodology for policymakers to develop targeted intervention strategies to address the increasingly severe challenge of HTDs in the context of global warming.

5.
Insects ; 15(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38667372

RESUMO

There is an increasing volume of literature on the impact of climate change on insects. However, there is an urgent need for more empirical research on underrepresented groups in key areas, including species for which the effects of climatic change may seem less evident. The present paper illustrates the results of a study on a common forest tenebrionid beetle, Accanthopus velikensis (Piller and Mitterpacher, 1783), at a regional scale within the Mediterranean basin. Using a large set of records from Latium (central Italy), changes in the median values of elevation, latitude, longitude, and phenology between two periods (1900-1980 vs. 1981-2022) were tested. Records of A. velikensis in the period 1981-2022 showed median values of elevation and latitude higher than those recorded in the first period. Thus, in response to rising temperatures, the species became more frequent at higher elevation and in northern places. By contrast, A. velikensis does not seem to have changed its activity pattern in response to increased temperatures, but this might be an artifact due to the inclusion of likely overwintering individuals. The results obtained for A. velikensis indicate that even thermally euryoecious species can show changes in their elevational and latitudinal distribution, and that poleward shifts can be apparent even within a small latitudinal gradient.

7.
J Anim Ecol ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644583

RESUMO

Ecological similarity plays an important role in biotic interactions. Increased body size similarity of competing species, for example, increases the strength of their biotic interactions. Body sizes of many exothermic species are forecast to be altered under global warming, mediating shifts in existing trophic interactions among species, in particular for species with different thermal niches. Temperate rocky reefs along the southeast coast of Australia are located in a climate warming hotspot and now house a mixture of temperate native fish species and poleward range-extending tropical fishes (vagrants), creating novel species assemblages. Here, we studied the relationship between body size similarity and trophic overlap between individual temperate native and tropical vagrant fishes. Dietary niche overlap between vagrant and native fish species increased as their body sizes converged, based on both stomach content composition (short-term diet), stable isotope analyses (integrated long-term diet) and similarity in consumed prey sizes. We conclude that the warming-induced faster growth rates of tropical range-extending fish species at their cool water ranges will continue to converge their body size towards and strengthen their degree of trophic interactions and dietary overlap with co-occurring native temperate species under increasing ocean warming. The strengthening of these novel competitive interactions is likely to drive changes to temperate food web structures and reshuffle existing species community structures.

8.
Mar Environ Res ; 198: 106482, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38626628

RESUMO

Neuston, situated at the air-sea interface, stands as a crucial frontier in the realm of the global warming. Despite its unique habitat, there remains a need to substantiate the composition, diel dynamic and biotic-abiotic interaction of neustonic zooplankton in the tropical seas. In this study, we present rare observational data on neustonic zooplankton (0-20 cm) in the oligotrophic tropical South China Sea (SCS) during the summer of 2022. A total of eighteen samples were collected and analyzed, revealing the presence of fourteen taxa from eight phyla. The most prevalent group was Cypridina, accounting for 33.7% of the total abundance, followed by copepods (29.0%) and jellyfish (10.9%). Within copepods, the genus Pontella exhibited the highest relative abundance (38.0%). Additionally, each neuston taxon displayed unique diel distribution patterns. Cypridina was the most abundant taxon during the night (40.4%), while it shifted to copepod dominance during the day (50.4%). Among copepods, genus Pontella and larvae were dominant groups at night (44.7%) and during the day (30.0%), respectively. Moreover, a multivariate biota-environment analysis demonstrated that temperature, pH, dissolved oxygen and Si(OH)4 significantly impacted neuston composition. Notably, both jellyfish and sea snails showed a significant positive correlation with temperature, suggesting their potential dominance in the neuston community in response to future global warming in the oligotrophic tropical seas. This study lays a robust foundation for recognizing the neuston community in the oceanic SCS, and helps evaluate the long-term risks to neuston habitats under climate changes.

9.
Front Plant Sci ; 15: 1352169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567135

RESUMO

Temperate fruit and nut crops require distinctive cold and warm seasons to meet their physiological requirements and progress through their phenological stages. Consequently, they have been traditionally cultivated in warm temperate climate regions characterized by dry-summer and wet-winter seasons. However, fruit and nut production in these areas faces new challenging conditions due to increasingly severe and erratic weather patterns caused by climate change. This review represents an effort towards identifying the current state of knowledge, key challenges, and gaps that emerge from studies of climate change effects on fruit and nut crops produced in warm temperate climates. Following the PRISMA methodology for systematic reviews, we analyzed 403 articles published between 2000 and 2023 that met the defined eligibility criteria. A 44-fold increase in the number of publications during the last two decades reflects a growing interest in research related to both a better understanding of the effects of climate anomalies on temperate fruit and nut production and the need to find strategies that allow this industry to adapt to current and future weather conditions while reducing its environmental impacts. In an extended analysis beyond the scope of the systematic review methodology, we classified the literature into six main areas of research, including responses to environmental conditions, water management, sustainable agriculture, breeding and genetics, prediction models, and production systems. Given the rapid expansion of climate change-related literature, our analysis provides valuable information for researchers, as it can help them identify aspects that are well understood, topics that remain unexplored, and urgent questions that need to be addressed in the future.

10.
Sci Rep ; 14(1): 7752, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565858

RESUMO

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Assuntos
Compostagem , Gases de Efeito Estufa , Solo , Agricultura/métodos , Triticum , Carbono , Carvão Vegetal , Cloreto de Sódio , Cloreto de Sódio na Dieta , Óxido Nitroso/análise , Dióxido de Carbono/análise
11.
Environ Monit Assess ; 196(5): 416, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570390

RESUMO

The research conducts a life cycle assessment (LCA) on wastewater treatment (WWT) methods-membrane bioreactor (MBR), soil biotechnology (SBT), and bio-electrochemical constructed wetlands (BCW)-in comparison with the conventional activated sludge process (ASP). Employing SimaPro v9.5 with a cradle-to-gate system boundary, the analysis utilizes the IMPACT 2002 + method, employing per cubic meter of treated wastewater as the functional unit. The analysis shows that SBT exhibits the lowest environmental impacts among the considered WWT methods. The global warming potential was 0.0996 kg CO2 eq. for SBT, 1.33 kg CO2 eq. for MBR, 0.131 kg CO2 eq. for BCW, and 0.544 kg CO2 eq. for ASP. BCW demonstrates a 75.91% decrease, while MBR exhibits a 144.48% increase compared to ASP. Notably, electricity consumption emerges as the primary contributor to environmental impact in MBR and ASP. The resource impact category varies with a 138.15% increase in MBR and an 83.41% decrease in SBT compared to ASP. Additionally, the research indicates that the high human health impact observed in MBR results mainly from increased carcinogens (0.00176 kg C2H3Cl eq.), non-carcinogens (0.01 kg C2H3Cl eq.), and ionizing radiation (3.34 Bq C-14 eq.). The findings underscore the importance of considering treatment efficiency and broader environmental implications in selecting WWT methods. As the world emphasizes sustainability, such LCA studies provide valuable insights for making informed decisions in wastewater management.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Humanos , Animais , Eliminação de Resíduos Líquidos/métodos , Dióxido de Carbono , Monitoramento Ambiental , Solo , Estágios do Ciclo de Vida
12.
Sci Total Environ ; : 172626, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657823

RESUMO

Despite the wide acknowledgment that plastic pollution and global warming have become serious agricultural concerns, their combined impact on crop growth remains poorly understood. Given the unabated megatrend, a simulated soil warming (SWT, +4 °C) microcosm experiment was carried out to provide a better understanding of the effects of temperature fluctuations on wheat seedlings exposed to nanoplastics (NPs, 1 g L-1 61.71 ±â€¯0.31 nm polystyrene). It was documented that SWT induced oxidative stress in wheat seedlings grown in NPs-contaminated soil, with an 85.56 % increase in root activity, while decreasing plant height, fresh weight, and leaf area by 8.72 %, 47.68 %, and 15.04 % respectively. The SWT also resulted in reduced photosynthetic electron-transfer reaction and Calvin-Benson cycle in NPs-treated plants. Under NPs, SWT stimulated the tricarboxylic acid (TCA) metabolism and bio-oxidation process. The decrease in photosynthesis and the increase in respiration resulted in an 11.94 % decrease in net photosynthetic rate (Pn). These results indicated the complicated interplay between climate change and nanoplastic pollution in crop growth and underscored the potential risk of nanoplastic pollution on crop production in the future climate.

13.
Proc Natl Acad Sci U S A ; 121(15): e2320687121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557179

RESUMO

The Mediterranean Sea is a marine biodiversity hotspot already affected by climate-driven biodiversity collapses. Its highly endemic fauna is at further risk if global warming triggers an invasion of tropical Atlantic species. Here, we combine modern species occurrences with a unique paleorecord from the Last Interglacial (135 to 116 ka), a conservative analog of future climate, to model the future distribution of an exemplary subset of tropical West African mollusks, currently separated from the Mediterranean by cold upwelling off north-west Africa. We show that, already under an intermediate climate scenario (RCP 4.5) by 2050, climatic connectivity along north-west Africa may allow tropical species to colonize a by then largely environmentally suitable Mediterranean. The worst-case scenario RCP 8.5 leads to a fully tropicalized Mediterranean by 2100. The tropical Atlantic invasion will add to the ongoing Indo-Pacific invasion through the Suez Canal, irreversibly transforming the entire Mediterranean into a novel ecosystem unprecedented in human history.


Assuntos
Biodiversidade , Ecossistema , Humanos , Mar Mediterrâneo , Aquecimento Global , África Ocidental
14.
Artigo em Inglês | MEDLINE | ID: mdl-38648975

RESUMO

Increased fossil fuel usage has increased CO2 concentrations leading to global warming and climate change with increased frequency and intensity of extreme weather events such as thunderstorms, wildfires, droughts, heat waves, and others. These changes increase the risk of adverse health effects for all human beings. However, these experiences do not impact everyone equally. Underserved communities, including people of color, the elderly, people living with chronic conditions, and socioeconomically disadvantaged groups have greater vulnerability to the impacts of climate change. These vulnerabilities are a result of multiple factors such as disparities in healthcare, lower educational status, systemic racism, and many others. These social inequities are exacerbated by extreme weather events, which act as threat multipliers increasing disparities in health outcomes. It is clear that without human action, these global temperatures will continue to increase to unbearable levels creating an existential crisis. There is now global consensus that climate change is caused by anthropogenic activity and that actions to mitigate and adapt to climate change are urgently needed. The 2015 Paris Accord was the first truly global commitment that set goals to limit further warming. It also aimed to implement equity in action, founded on the principle of common but differentiated responsibilities. Meeting these goals require individual, community, organizational, national, and global cooperation. Health care professionals, often in the frontline with firsthand knowledge of the health impacts of climate change, can play a key role in advocating for just and equitable climate change adaptation and mitigation.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38652188

RESUMO

Aquaculture witnessed a remarkable growth as one of the fastest-expanding sector in the food production industry; however, it faces serious threat from the unavoidable impacts of climate change. Understanding this threat, the present review explores the consequences of climate change on aquaculture production and provides need based strategies for its sustainable management, with a particular emphasis on climate-resilient approaches. The study examines the multi-dimensional impacts of climate change on aquaculture which includes the shifts in water temperature, sea-level rise, ocean acidification, harmful algal blooms, extreme weather events, and alterations in ecological dynamics. The review subsequently investigates innovative scientific interventions and climate-resilient aquaculture strategies aimed at strengthening the adaptive capacity of aquaculture practices. Some widely established solutions include selective breeding, species diversification, incorporation of ecosystem-based management practices, and the implementation of sustainable and advanced aquaculture systems (aquaponics and recirculating aquaculture systems (RAS). These strategies work towards fortifying aquaculture systems against climate-induced disturbances, thereby mitigating risks and ensuring sustained production. This review provides a detailed insight to the ongoing discourse on climate-resilient aquaculture, emphasizing an immediate need for prudent measures to secure the future sustainability of fish food production sector.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38653890

RESUMO

Climate events significantly affect the lives of not only humanity but also all living things. Just as transformation in the ecosystem affects sectors, all sectors also transform the ecosystem. It is stated that the agricultural sector is at the root of the deterioration in the ecosystem due to the effect of intensive agriculture after the green revolution. It can be stated that, with an understanding far from the concept of sustainability, the foodstuffs and their waste produced in the agricultural sector are considered among the causes of climate change, which is now concentrated on the whole world in the third millennium. In this study, the effect of N2O gas released from produce residues and the release of enteric fermentation on the level of CO2 released from agricultural-food systems was investigated using advanced econometric models. The findings reveal that both factors are effective. However, it can be stated that the effect of N2O gas released from the produce residues is greater. Suggestions such as improving feed rations and maintaining herd management strategies within certain patterns to reduce the level of enteric fermentation may contribute to the process. In produce residue management, turning waste into compost and expanding bioenergy power plants will ensure both waste disposal and resource continuity in generating energy. Otherwise, the decreasing resources in the world may come to an end, and there will be disruptions and problems in the agricultural sector, as in all sectors. Considering the increasing world population, it is inevitable that food supply security may be endangered and the hunger problem may reach an irreversible level.

17.
Water Res ; 256: 121490, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38614028

RESUMO

Urbanization increases the land surface temperature through surface mineralization, adversely affecting vegetation and enhancing the urban heat island (UHI) effect. Global climate change has intensified this warming effect with more frequent and intense heatwaves during hot seasons. While these transformations influence soil temperature, their consequences on drinking water temperature within the drinking water distribution system (DWDS) remains poorly understood. Literature proposes to increase pipe burial depths to mitigate drinking water heating during summer. In this study, we monitored drinking water temperatures in a DWDS in Montreal, Canada with deeply buried pipes (average 1.8 m) during the summer of 2022, focusing on two contrasting zones in terms of UHI and green coverage. Monitoring revealed a 8°C heating effect compared to the water treatment plant, attributed to low green coverage and anthropogenic heat. Conversely, the greener zone exhibited cooler drinking water temperatures, reaching a maximum cooling effect of 8°C as compared to the temperature at the exit of the water treatment plant. Utilizing a soil and water temperature model, we predicted drinking water temperatures within the DWDS with acceptable accuracy. Soil temperature modeling results aligned well with measured water temperatures, highlighting DWDS water temperature approaching its surrounding soil temperature fairly quickly. Despite heatwaves, no immediate correlation emerged between air temperature records and measured water temperatures, emphasizing soil temperature as a superior indicator. An increase in water age displayed no correlation with an increase in measured water temperature, underscoring the dominant influence of UHI and green coverage on water temperature. These findings highlight the cooling advantages of green spaces during summer, providing valuable insights for sustainable urban planning.

18.
Huan Jing Ke Xue ; 45(5): 2891-2904, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629551

RESUMO

The increasing use of nitrogen fertilizers exerts extreme pressure on the environment (e.g., greenhouse gas emissions, GHGs) for winter wheat-summer maize rotation systems in the North China Plain. The application of controlled-release fertilizers is considered as an effective measure to improve crop yield and nitrogen fertilizer utilization efficiency. To explore the impact of one-time fertilization of controlled-release blended fertilizer on crop yield and GHGs of a wheat-maize rotation system, field experiments were carried out in Dezhou Modern Agricultural Science and Technology Park from 2020 to 2022. Five treatments were established for both winter wheat and summer maize, including no nitrogen control (CK), farmers' conventional nitrogen application (FFP), optimized nitrogen application (OPT), CRU1 (the blending ratio of coated urea and traditional urea on winter wheat and summer maize was 5:5 and 3:7, respectively), and CRU2 (the blending ratio of coated urea and traditional urea on winter wheat and summer maize was 7:3 and 5:5, respectively). The differences in yield, nitrogen fertilizer utilization efficiency, fertilization economic benefits, and GHGs among different treatments were compared and analyzed. The results showed that nitrogen application significantly increased the single season and annual crop yields of the wheat-maize rotation system (P < 0.05). Compared with those of FFP, the CRU1 and CRU2 treatments increased the yields of summer maize by 0.4% to 5.6%, winter wheat by -5.4% to 4.1%, and annual yields by -1.1% to 3.9% (P > 0.05). N recovery efficiency (NRE), N agronomic efficiency (NAE), and N partial factor productivity (NPFP) were increased by -8.6%-43.4%, 2.05-6.24 kg·kg-1, and 4.24-10.13 kg·kg-1, respectively. Annual net income increased by 0.2% to 6.3%. Nitrogen application significantly increased the annual emissions of soil N2O and CO2 in the rotation system (P < 0.05) but had no effect on the annual emissions of CH4 (except for in the FFP treatment in the first year). The annual total N2O emissions under the CRU1 and CRU2 treatments were significantly reduced by 23.4% to 30.2% compared to those under the FFP treatment (P < 0.05). Additionally, nitrogen application significantly increased the annual global warming potential (GWP) of the rotation system (P < 0.05), but the intensity of greenhouse gas emissions was reduced due to the increase in crop yields. Compared with that under FFP, the annual GWP under the CRU1 and CRU2 treatments decreased by 9.6% to 11.5% (P < 0.05), and the annual GHGs decreased by 11.2% to 13.8% (P > 0.05). In summary, the one-time application of controlled-release blended fertilizer had a positive role in improving crop yield and economic benefits, reducing nitrogen fertilizer input and labor costs, and GHGs, which is an effective nitrogen fertilizer management measure to promote cleaner production of food crops in the North China Plain.


Assuntos
Gases de Efeito Estufa , Fertilizantes , Triticum , Zea mays , Preparações de Ação Retardada , Óxido Nitroso/análise , Agricultura/métodos , Solo , China , Nitrogênio , Ureia
19.
Parasit Vectors ; 17(1): 187, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605410

RESUMO

BACKGROUND: In the context of climate change, a growing concern is that vector-pathogen or host-parasite interactions may be correlated with climatic factors, especially increasing temperatures. In the present study, we used a mosquito-microsporidian model to determine the impact of environmental factors such as temperature, humidity, wind and rainfall on the occurrence rates of opportunistic obligate microparasites (Microsporidia) in hosts from a family that includes important disease vectors (Culicidae). METHODS: In our study, 3000 adult mosquitoes collected from the field over 3 years were analysed. Mosquitoes and microsporidia were identified using PCR and sequencing of the hypervariable V5 region of the small subunit ribosomal RNA gene and a shortened fragment of the cytochrome c oxidase subunit I gene, respectively. RESULTS: DNA metabarcoding was used to identify nine mosquito species, all of which were hosts of 12 microsporidian species. The prevalence of microsporidian DNA across all mosquito samples was 34.6%. Microsporidian prevalence in mosquitoes was more frequent during warm months (> 19 °C; humidity < 65%), as was the co-occurrence of two or three microsporidian species in a single host individual. During warm months, microsporidian occurrence was noted 1.6-fold more often than during the cold periods. Among the microsporidians found in the mosquitoes, five (representing the genera Enterocytospora, Vairimorpha and Microsporidium) were positively correlated with an increase in temperature, whereas one (Hazardia sp.) was significantly correlated with a decrease in temperature. Threefold more microsporidian co-occurrences were recorded in the warm months than in the cold months. CONCLUSIONS: These results suggest that the susceptibility of mosquitoes to parasite occurrence is primarily determined by environmental conditions, such as, for example, temperatures > 19 °C and humidity not exceeding 62%. Collectively, our data provide a better understanding of the effects of the environment on microsporidian-mosquito interactions.


Assuntos
Culicidae , Microsporídios , Animais , Culicidae/parasitologia , Temperatura , Umidade , Mosquitos Vetores , Microsporídios/genética , DNA
20.
Ecol Evol ; 14(4): e11294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633520

RESUMO

Flowering time is an important phenological trait in plants and a critical determinant of the success of pollination and fruit or seed development, with immense significance for agriculture as it directly affects crop yield and overall food production. Shifts in the growth season, changes in the growth season duration and changes in the production rate are environmental processes (potentially linked to climate change) that can lead to changes in flowering time in the long-term due to selection. In contrast, biomass loss (due to, for example, herbivory or diseases) can have profound consequences for plant mass production and food security. We model the effects of these environmental processes on the flowering time evolutionarily stable strategy (ESS) of annual plants and the potential consequences for reproductive output. Our model recapitulates previous theoretical results linked to climate change and light competition and makes novel predictions about the effects of biomass loss on the evolution of flowering time. Our analysis elucidates how both the magnitude and direction of the evolutionary response can depend on whether biomass loss occurs during the earlier vegetative phase or during the later reproductive phase and on whether or not plants are adapted to grow in dense, competitive environments. Specifically, light competition generates an asymetric effect of mass loss on flowering time even when loss is indiscriminate (equal rates), with vegetative mass loss having a stronger effect on flowering time (resulting in greater ESS change) and final reproductive output.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...